Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 31(Pt 3): 622-634, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38662410

RESUMO

A high-flux beamline optimized for non-resonant X-ray emission spectroscopy (XES) in the tender X-ray energy range has been constructed at the BESSY II synchrotron source. The beamline utilizes a cryogenically cooled undulator that provides X-rays over the energy range 2.1 keV to 9.5 keV. This energy range provides access to XES [and in the future X-ray absorption spectroscopy (XAS)] studies of transition metals ranging from Ti to Cu (Kα, Kß lines) and Zr to Ag (Lα, Lß), as well as light elements including P, S, Cl, K and Ca (Kα, Kß). The beamline can be operated in two modes. In PINK mode, a multilayer monochromator (E/ΔE ≃ 30-80) provides a high photon flux (1014 photons s-1 at 6 keV and 300 mA ring current), allowing non-resonant XES measurements of dilute substances. This mode is currently available for general user operation. X-ray absorption near-edge structure and resonant XAS techniques will be available after the second stage of the PINK commissioning, when a high monochromatic mode (E/ΔE ≃ 10000-40000) will be facilitated by a double-crystal monochromator. At present, the beamline incorporates two von Hamos spectrometers, enabling time-resolved XES experiments with time scales down to 0.1 s and the possibility of two-color XES experiments. This paper describes the optical scheme of the PINK beamline and the endstation. The design of the two von Hamos dispersive spectrometers and sample environment are discussed here in detail. To illustrate, XES spectra of phosphorus complexes, KCl, TiO2 and Co3O4 measured using the PINK setup are presented.

2.
Nanomaterials (Basel) ; 12(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36364540

RESUMO

Scan-free grazing-emission X-ray fluorescence spectroscopy (GEXRF) is an established technique for the investigation of the elemental depth-profiles of various samples. Recently it has been applied to investigating structured nanosamples in the tender X-ray range. However, lighter elements such as oxygen, nitrogen or carbon cannot be efficiently investigated in this energy range, because of the ineffective excitation. Moreover, common CCD detectors are not able to discriminate between fluorescence lines below 1 keV. Oxygen and nitrogen are important components of insulation and passivation layers, for example, in silicon oxide or silicon nitride. In this work, scan-free GEXRF is applied in proof-of-concept measurements for the investigation of lateral ordered 2D nanostructures in the soft X-ray range. The sample investigated is a Si3N4 lamellar grating, which represents 2D periodic nanostructures as used in the semiconductor industry. The emerging two-dimensional fluorescence patterns are recorded with a CMOS detector. To this end, energy-dispersive spectra are obtained via single-photon event evaluation. In this way, spatial and therefore angular information is obtained, while discrimination between different photon energies is enabled. The results are compared to calculations of the sample model performed by a Maxwell solver based on the finite-elements method. A first measurement is carried out at the UE56-2 PGM-2 beamline at the BESSY II synchrotron radiation facility to demonstrate the feasibility of the method in the soft X-ray range. Furthermore, a laser-produced plasma source (LPP) is utilized to investigate the feasibility of this technique in the laboratory. The results from the BESSY II measurements are in good agreement with the simulations and prove the applicability of scan-free GEXRF in the soft X-ray range for quality control and process engineering of 2D nanostructures. The LPP results illustrate the chances and challenges concerning a transfer of the methodology to the laboratory.

3.
Microsc Microanal ; 26(6): 1124-1132, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33023699

RESUMO

Laboratory transmission soft X-ray microscopy (L-TXM) has emerged as a complementary tool to synchrotron-based TXM and high-resolution biomedical 3D imaging in general in recent years. However, two major operational challenges in L-TXM still need to be addressed: a small field of view and a potentially misaligned rotation stage. As it is not possible to alter the magnification during operation, the field of view in L-TXM is usually limited to a few tens of micrometers. This complicates locating areas and objects of interest in the sample. Additionally, if the rotation axis of the sample stage cannot be adjusted prior to the experiments, an efficient workflow for tomographic imaging cannot be established, as refocusing and sample repositioning will become necessary after each recorded projection. Both these limitations have been overcome with the integration of a visible-light microscope (VLM) into the L-TXM system. Here, we describe the calibration procedure of the goniometer sample stage and the integrated VLM and present the resulting 3D imaging of a test sample. In addition, utilizing this newly integrated VLM, the extracellular matrix of cryofixed THP-1 cells (human acute monocytic leukemia cells) was visualized by L-TXM for the first time in the context of an ongoing biomedical research project.


Assuntos
Laboratórios , Microscopia , Humanos , Imageamento Tridimensional , Síncrotrons , Fluxo de Trabalho , Raios X
4.
Inorg Chem ; 59(12): 8272-8283, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32390417

RESUMO

Ruthenium 4d-to-2p X-ray emission spectroscopy (XES) was systematically explored for a series of Ru2+ and Ru3+ species. Complementary density functional theory calculations were utilized to allow for a detailed assignment of the experimental spectra. The studied complexes have a range of different coordination spheres, which allows the influence of the ligand donor/acceptor properties on the spectra to be assessed. Similarly, the contributions of the site symmetry and the oxidation state of the metal were analyzed. Because the 4d-to-2p emission lines are dipole-allowed, the spectral features are intense. Furthermore, in contrast with K- or L-edge X-ray absorption of 4d transition metals, which probe the unoccupied levels, the observed 4p-to-2p XES arises from electrons in filled-ligand- and filled-metal-based orbitals, thus providing simultaneous access to the ligand and metal contributions to bonding. As such, 4d-to-2p XES should be a promising tool for the study of a wide range of 4d transition-metal compounds.

5.
Rev Sci Instrum ; 91(1): 016102, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32012533

RESUMO

Efficient soft X-ray spectroscopy in the laboratory is still a challenging task. Here, we report on new toroidal multilayer optics designed and applied with the laser-produced plasma (LPP) source of the Berlin Laboratory for innovative X-ray technologies. The optics are described and characterized, and the application of the updated source to scanning-free grazing emission X-ray fluorescence is demonstrated on thermoelectric gold-doped copper oxide nanofilms. The comparison with synchrotron measurements allows estimating a flux on the sample of approximately 7.5 × 109 photons/s in the 1 keV range on a 100 µm × 100 µm spot, emphasizing the suitability of the updated LPP source for the application in photon hungry experiments.

6.
Rev Sci Instrum ; 89(11): 113111, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30501328

RESUMO

We have built a laboratory spectrometer for X-ray emission spectroscopy. The instrument is employed in catalysis research. The key component is a von Hamos full cylinder optic with Highly Annealed Pyrolytic Graphite (HAPG) as a dispersive element. With this very efficient optic, the spectrometer subtends an effective solid angle of detection of around 1 msr, allowing for the analysis of dilute samples. The resolving power of the spectrometer is approximately E/ΔE = 4000, with an energy range of ∼2.3 keV-10 keV. The instrument and its characteristics are described herein. Further, a comparison with a prototype spectrometer, based on the same principle, shows the substantial improvement in the spectral resolution and energy range for the present setup. The paper concludes with a discussion of sample handling. A compilation of HAPG fundamentals and related publications are given in a brief Appendix.

7.
J Phys Chem B ; 120(45): 11619-11627, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27783515

RESUMO

The interaction of the central magnesium atom of chlorophyll a (Chl a) with the carbon and nitrogen backbone was investigated by magnesium K near-edge X-ray absorption fine structure (NEXAFS) spectroscopy in fluorescence detection mode. A crude extract of Chl a was measured as a 1 × 10-2 mol/L ethanol solution (which represents an upper limit of concentration without aggregation) and as dried droplets. For the first time, the investigation of Mg bound to Chl a in a liquid environment by means of X-ray absorption spectroscopy is demonstrated. A pre-edge feature in the dissolved as well as in dried Chl a NEXFAS spectra has been identified as a characteristic transition originating from Mg in the Chl a molecule. This result is confirmed by theoretical DFT calculations leading to molecular orbitals (MO) which are mainly situated on the magnesium atom and nitrogen and carbon atoms from the pyrrole rings. The description is the first referring to the MO distribution with respect to the central Mg ion of Chl a and the surrounding atoms. On this basis, new approaches for the investigations of dynamic processes of molecules in solution and structure-function relationships of photosynthetic pigments and pigment-protein complexes in their native environment can be developed.


Assuntos
Clorofila/análogos & derivados , Etanol/química , Magnésio/química , Clorofila/química , Soluções , Espectroscopia por Absorção de Raios X
8.
Rev Sci Instrum ; 86(3): 035116, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25832284

RESUMO

In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.


Assuntos
Análise Espectral/instrumentação , Desenho de Equipamento , Estudos de Viabilidade , Imidas/química , Lasers , Fótons , Rotação , Análise Espectral/métodos , Raios Ultravioleta , Raios X
9.
Rev Sci Instrum ; 85(5): 053110, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24880356

RESUMO

We present a novel, highly efficient von Hamos spectrometer for X-ray emission spectroscopy (XES) in the laboratory using highly annealed pyrolitic graphite crystals as the dispersive element. The spectrometer covers an energy range from 2.5 keV to 15 keV giving access to chemical speciation and information about the electronic configuration of 3d transition metals by means of the Kß multiplet. XES spectra of Ti compounds are presented to demonstrate the speciation capabilities of the instrument. A spectral resolving power of E/ΔE = 2000 at 8 keV was achieved. Typical acquisition times range from 10 min for bulk material to hours for thin samples below 1 µm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...